Перевод: со всех языков на английский

с английского на все языки

mining machinery manufacturing

  • 1 горное машиностроение

    Russian-English mining-engineering dictionary > горное машиностроение

  • 2 горный

    Русско-английский большой базовый словарь > горный

  • 3 машиностроение

    Русско-английский большой базовый словарь > машиностроение

  • 4 машиностроение

    Русско-английский новый политехнический словарь > машиностроение

  • 5 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 6 Industry

       Portuguese industry includes electricity, gas, water, mining, and manufacturing sectors. Manufacturing, the largest of these sectors, is concentrated in two major industrial regions: Lisbon-Setúbal in the south and Oporto-Aveiro-Braga in the north. Together, these two regions contain the factories that account for 75 percent of Portugal's industrial output. The Lisbon-Setúbal region includes major heavy industries, such as steel making, shipbuilding and repair, oil refining, chemicals, cement, automobile assembly, wood pulp, cork, and fish processing. About 140 kilometers (84 miles) to the south at Sines is a major deepwater port and associated steel-making and oil-refining complex at Sines. Light industry is located primarily in the Oporto-Aveiro-Braga industrial triangle. Here are located factories that manufacture textiles, footwear, furniture, cutlery, and electronics. Portugal's largest petroleum refinery is located in Oporto.
       Industrial organization in Portugal reflects three ownership patterns: privately owned domestic factories are concentrated in light industrials; publicly owned factories dominate heavy industry, such as petrochemicals, shipbuilding, steel making, petroleum refining, and electricity; subsidiaries of multinational corporations dominate electronics, automotive, pharmaceutical, and electrical machinery industries. In general, Portugal's light industries, such as textiles, footwear, food, beverage, cork products, and furniture, are labor intensive and technologically backward.

    Historical dictionary of Portugal > Industry

  • 7 Ellington, Edward Bayzard

    [br]
    b. 2 August 1845 London, England
    d. 10 November 1914 London, England
    [br]
    English hydraulic engineer who developed a direct-acting hydraulic lift.
    [br]
    Ellington was educated at Denmark Hill Grammar School, London, after which he became articled to John Penn of Greenwich. He stayed there until 1868, working latterly in the drawing office after a period of erecting plant and attending trials on board ship. For some twelve months he superintended the erection of Glengall Wharf, Old Kent Road, and the machinery used therein.
    In 1869 he went into partnership with Bryan Johnson of Chester, the company being known as Johnson \& Ellington, manufacturing mining and milling machinery. Under Ellington's influence, the firm specialized in the manufacture of hydraulic machinery. In 1874 the company acquired the right to manufacture the Brotherhood three-cylinder hydraulic engine; the company became the Hydraulic Engineering Company Ltd of Chester. Ellington developed a direct-acting hydraulic lift with a special balance arrangement that was smooth-acting and economical in water. He described the lift in a paper that was read to the Institution of Mechanical Engineers (IMechE) in 1882.
    Soon after Ellington joined the Chester firm, an Act of Parliament was passed, mainly due to his efforts, for the distribution of water under high pressure for the working of passenger and goods lifts and other hydraulic machinery in large towns. In 1872 he initiated the first hydraulic mains company at Hull, thus proving the practicability of the system of a high-pressure water-mains supply. Ellington remained as engineer to the Hull company until he was appointed a director in 1875. He was general manager and engineer of the General Hydraulic Power Company, which operated in London and had subsidiaries in Liverpool (opened in 1889), Manchester (1894) and Glasgow (1895). He maintained an interest in all these companies, as general manager and engineer, until his death.
    In 1895 he read another paper, "On hydraulic power in towns", to the Institution of Mechanical Engineers. In 1911 he became President of the IMechE; his Presidential Address was on the education of young engineers. In 1913 he delivered the Thomas Hawksley Lecture on "Water as a mechanical agent". He was Chairman of the Building Committee during the extension of the Institution's headquarters. Ellington was also a Member of Council of the Institution of Civil Engineers, a member of the Société des Ingé-nieurs Civils de France and a Governor of Imperial College of Science and Technology.
    [br]
    Principal Honours and Distinctions
    Member of the Institution of Mechanical Engineers 1875; Member of Council 1898– 1903; President 1911–12.
    IMcN

    Biographical history of technology > Ellington, Edward Bayzard

  • 8 Ilgner, Karl

    SUBJECT AREA: Electricity
    [br]
    b. 27 July 1862 Neisse, Upper Silesia (now Nysa, Poland)
    d. 18 January 1921 Berthelsdorf, Silesia
    [br]
    German electrical engineer, inventor of a transformer for electromotors.
    [br]
    Ilgner graduated from the Gewerbeakademie (the forerunner of the Technical University) in Berlin. As the representative of an electric manufacturing company in Breslau (now Wroclaw, Poland) from 1897, he was confronted with the fact that there were no appropriate drives for hoisting-engines or rolling-plants in steelworks. Two problems prevented the use of high-capacity electric motors in the mining as well as in the iron and steel industry: the reactions of the motors on the circuit at the peak point of stress concentration; and the complicated handling of the control system which raised the risks regarding safety. Having previously been head of the department of electrical power transmission in Hannover, he was concerned with the development of low-speed direct-current motors powered by gas engines.
    It was Harry Ward Leonard's switchgear for direct-current motors (USA, 1891) that permitted sudden and exact changes in the speed and direction of rotation without causing power loss, as demonstrated in the driving of a rolling sidewalk at the Paris World Fair of 1900. Ilgner connected this switchgear to a large and heavy flywheel which accumulated the kinetic energy from the circuit in order to compensate shock loads. With this combination, electric motors did not need special circuits, which were still weak, because they were working continuously and were regulated individually, so that they could be used for driving hoisting-engines in mines, rolling-plants in steelworks or machinery for producing tools and paper. Ilgner thus made a notable advance in the general progress of electrification.
    His transformer for hoisting-engines was patented in 1901 and was commercially used inter alia by Siemens \& Halske of Berlin. Their first electrical hoisting-engine for the Zollern II/IV mine in Dortmund gained international reputation at the Düsseldorf exhibition of 1902, and is still preserved in situ in the original machine hall of the mine, which is now a national monument in Germany. Ilgner thereafter worked with several companies to pursue his conception, became a consulting engineer in Vienna and Breslau and had a government post after the First World War in Brussels and Berlin until he retired for health reasons in 1919.
    [br]
    Bibliography
    1901, DRP no. 138, 387 1903, "Der elektrische Antrieb von Reversier-Walzenstraßen", Stahl und Eisen 23:769– 71.
    Further Reading
    W.Kroker, "Karl Ilgner", Neue Deutsche Biographie, Vol. X, pp. 134–5. W.Philippi, 1924, Elektrizität im Bergbau, Leipzig (a general account).
    K.Warmbold, 1925, "Der Ilgner-Umformer in Förderanlagen", Kohle und Erz 22:1031–36 (a detailed description).
    WK

    Biographical history of technology > Ilgner, Karl

  • 9 Ingersoll, Simon

    [br]
    b. 3 March 1818 Stamford, Connecticut, USA
    d. 24 July 1894 Stamford, Connecticut, USA
    [br]
    American mechanic, inventor of a rock drill
    [br]
    Ingersoll worked on his father's farm and spent much of his time carrying out all kinds of mechanical experiments until 1839, when he went to Long Island, New York, to work on another farm. Having returned home in 1858, he received several patents for different mechanical devices, but he did not know how to turn his inventive talent into economic profit. His patents were sold to others for money to continue his work and support his family. In 1870, working again on Long Island, he by chance came into contact with New York City's largest contractor, who urged him to design a mechanical rock drill in order to replace hand drills in the rock-excavation business. Within one year Ingersoll built several models and a full-size machine at the machine shop of Henry Clark Sergeant, who contributed several improvements. They secured a joint patent in 1871, which was soon followed by a patent for a rock drill with tappet-valve motion.
    Although the Ingersoll Drill Company was established, he again sold the patent rights and went back to Stamford, where he continued his inventive work and gained several more patents for improving the rock drill. However, he never understood how to make a fortune from his patents, and he died almost penniless. His former partner, Sergeant, who had formed his own drill company on the basis of an entirely novel valve motion which led to compressed air being used as a power source, in 1888 established the Ingersoll- Sergeant Drill Company, which in 1905 merged with Rand Drill Company, which had been a competitor, to form the Ingersoll-Rand Company. This merger led to many achievements in manufacturing rock drills and air compressors at a time when there was growing demand for such machinery.
    [br]
    Further Reading
    Dictionary of American Biography (articles on both Ingersoll and Sergeant). W.L.Saunders, 1910, "The history of the rock drill and of the Ingersoll-Rand Company", Compressed Air Magazine: 3,679–80 (a lively description of the way in which he was encouraged to design the rock drill).
    WK

    Biographical history of technology > Ingersoll, Simon

См. также в других словарях:

  • Joy Mining Machinery — Infobox Company company name = Joy Mining Machinery company company type = Subsidiary (Parent: Joy Global) foundation = Incorporated in 1919 company slogan = [World s Leading Manufacturer of Underground Mining Equipment] location = Warrendale,… …   Wikipedia

  • Manufacturing engineering — is a field dealing with different manufacturing practices and the research and development of processes, machines and equipment. Contents 1 Overview 2 History 2.1 Modern developments 3 Education …   Wikipedia

  • Mining — This article is about the extraction of geological materials from the Earth. For the municipality in Austria, see Mining, Austria. For the siege tactic, see Mining (military). For name of the Chinese emperor, see Daoguang Emperor. Simplified… …   Wikipedia

  • Mining engineering — Surface coal mine with haul truck in foreground Mining engineering is an engineering discipline that involves the practice, the theory, the science, the technology, and application of extracting and processing minerals from a naturally occurring… …   Wikipedia

  • Manufacturing — Part of a series of articles on Industry Manufacturing …   Wikipedia

  • Manufacturing in Australia — Although primary production is the main industry in Australia, manufacturing in Australia is still a significant industry. Contents 1 History 2 Food processing 3 Textile industry 4 Motor vehicles …   Wikipedia

  • Mining in South Africa — has been the main driving force behind the history and development of Africa s most advanced and richest economy. Large scale and profitable mining started with the discovery of a diamond on the banks of the Orange River in 1867 by Erasmus Jacobs …   Wikipedia

  • Mining industry of Ghana — accounts for 5% of the country s GDP and minerals make up 37% of total exports, of which gold contributes over 90% of the total mineral exports. Thus, the main focus of Ghana s mining and minerals development industry remains focused on gold.… …   Wikipedia

  • Manufacturing in the United Kingdom — Contents 1 Engineering and allied industries 2 Other important sectors 3 See also …   Wikipedia

  • Manufacturing in Japan — ASIMO is the most advanced humanoid robot Japan s major export industries include automobiles, consumer electronics (see Japanese consumer electronics industry), computers, semiconductors, copper, iron and steel. Additional key industries in… …   Wikipedia

  • Mining industry of South Africa — Premier Diamond Mine, Cullinan, Gauteng, South Africa Mining in South Africa has been the main driving force behind the history and development of Africa s most advanced and richest economy. Large scale and profitable mining started with the… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»